Acta Crystallographica Section C
Crystal Structure Communications
ISSN 0108-2701

1,4-Bis(2-benzimidazolyl)benzene

Fengli Bei, ${ }^{\text {a }}$ Fangfang Jian, ${ }^{\text {a }}$ Xujie Yang, ${ }^{\text {a }}$ Lude Lu, ${ }^{\text {a }}$ Xin Wang, ${ }^{\text {a }}$ S. Shanmuga Sundara Raj ${ }^{\text {b }}$ and Hoong-Kun Fun ${ }^{\text {b* }}$
${ }^{\text {a }}$ Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 3 February 2000
Accepted 10 March 2000

The title compound, $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}$, lies about an inversion centre and the benzimidazole moiety and the phenyl ring are twisted by $30.9(1)^{\circ}$. The benzimidazole moiety is completely planar, with a maximum deviation of 0.009 (2) A. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds give rise to a layered structure, with the layers stacked by van der Waals interactions.

Comment

Benzimidazole is an interesting heterocyclic ring because it is present in various naturally occurring drugs such as omeprazole, astemizole and emedastine difumarate (Sakai $e t$ al., 1989). The efficacy of substituted benzimidazoles in the treatment of parasitic infections is well known (Brown et al., 1961; Preston, 1974; Sarkar et al., 1984). Substituted benzimidazole moieties are established pharmacophores in parasitic chemotherapy. $\operatorname{Bis}(2$-benzimidazoles) and some substituted bis(2-benzimidazolyl)alkanes have attracted much interest because of their wide-ranging antiviral activity (Tidwell et al., 1993) and also because of the coordination chemistry of azoles acting as ligands in transition metal compounds. Such compounds are increasingly being studied in
the context of modelling biological systems (Bouwman et al., 1990; Pujar \& Bharamgoudar, 1988). The present work reports the crystal and molecular structure of the title compound, (I).

(I)

The asymmetric unit contains half the molecule and the other half is inversion related (Fig. 1) $(1-x,-y, 1-z)$. The average bond distances and angles for the benzimidazole ring is in good agreement with those of other substituted bis(benzimidazole) compounds (Matthews et al., 1996; Ozbey et al., 1998). The two internal-ring bond angles, at C7 [113.3 (2) $\left.{ }^{\circ}\right]$ and at C8 [119.2 (2) ${ }^{\circ}$], are similar to those found in related compounds (Rajnikant et al., 1995). The C7-C8 bond length, 1.468 (3) \AA, is close to the standard value for a single-bond length between trigonally linked C atoms (Cruickshank \& Sparks, 1960). The bond lengths of $\mathrm{C}-\mathrm{N}$ in the imidazole ring are in the range $1.320-1.400 \AA$, which are shorter than the single-bond length of $1.48 \AA$ and longer than the typical $\mathrm{C}=\mathrm{N}$ distance of $1.28 \AA$, indicating partial double-bond character. This can be interpreted in terms of conjugation in the heterocycle. The phenyl ring is twisted through 30.9 (1) ${ }^{\circ}$ with the benzimidazole moiety along the $\mathrm{C} 7-\mathrm{C} 8$ bond. The benzimidazole moiety is completely planar, with a maximum deviation of $0.009(2)^{\circ}$ for C ; the dihedral angle between the aromatic ring and the five-membered ring is only $0.1(1)^{\circ}$.

The molecule forms a two-dimensional network bonded through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The hydrogen-bonded layers, parallel to (001), are stacked upon one another by translation and held together by van der Waals attractions.

Experimental

The title compound was prepared from benzene-1,4-dicarboxylic acid and 1,2 -diaminobenzene in 66% yield using a modified Phillips reaction (Addison \& Burke, 1981; Addison et al., 1983) and was recrystallized from methanol. The single crystals suitable for X-ray analysis were then obtained by slow evaporation at room temperature from the EtOH solvent.

Figure 1
The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (i) $1-x,-y, 1-z$].

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}$
$M_{r}=310.35$
Orthorhombic, Pbca
$a=10.2400(3) \AA$
$b=9.7505(2) \AA$
$c=15.0310(4) \AA$
$V=1500.77(7) \AA^{3}$
$Z=4$
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD area-	$R_{\text {int }}=0.076$
\quad detector diffractometer	$\theta_{\max }=28.28^{\circ}$
ω scans	$h=-9 \rightarrow 13$
9577 measured reflections	$k=-12 \rightarrow 12$
1846 independent reflections	$l=-19 \rightarrow 19$

1223 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$\begin{aligned} w & =1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0584 P)^{2}\right. \\ & +0.4289 P]\end{aligned}$
$w R\left(F^{2}\right)=0.155$
$S=1.117$
1846 reflections
109 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 7$	$1.320(3)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.386(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.400(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.398(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.359(2)$	$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$1.377(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.379(3)$	$\mathrm{C} 10-\mathrm{C} 9^{\mathrm{i}}$	$1.377(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$104.4(2)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 1$	$107.0(2)$

Symmetry code: (i) $1-x,-y, 1-z$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.17	$3.033(2)$	175

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, z$.

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R \& D No. 305/pfizik/622004. SSSR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1369). A packing diagram of (I) has also been deposited. Services for accessing these data are described at the back of the journal.

References

Addison, A. W. \& Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803-805.
Addison, A. W., Rao, T. N. \& Wahlgren, C. G. (1983). J. Heterocycl. Chem. 20, 1481-1484.
Bouwman, E., Driessen, W. L. \& Reedijk, J. (1990). Coord. Chem. Rev. 104, 143-172.
Brown, H. D., Matzuk, A. R., Lines, I. R., Peterson, L. H., Harris, S. A., Sarrett, L. H., Egerton, J. R., Yakstis, J. J., Campell, W. C. \& Cockler, A. C. (1961). J. Am. Chem. Soc. 83, 1764-1765.
Cruickshank, D. W. J. \& Sparks, R. A. (1960). Proc. R. Soc. A258, 270-285.
Matthews, C. J., Clegg, W., Elsegood, M. R. J., Leese, T. A., Thorp, D., Thornton, P. \& Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 15311538.

Ozbey, S., Ide, S. \& Kendi, E. (1998). J. Mol. Struct. 442, 23-30.
Preston, P. N. (1974). Chem. Rev. 74, 279-314.
Pujar, M. A. \& Bharamgoudar, T. D. (1988). Transition Met. Chem. 13, 423425.

Rajnikant, Watkin, D. J. \& Tranter, G. (1995). Acta Cryst. C51, 2388-2390.
Sakai, T., Hamada, T., Awata, N. \& Watanabe, J. (1989). Pharmacobio. Dyn. 12, 530-536.
Sarkar, B. R., Pathak, B., Dutta, S. \& Lahiri, S. C. (1984). J. Indian Chem. Soc. 61, 151-153.
Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. \& Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713-1716.

